Follow and like us on our Facebook page where we post on the new release subject and answering tips and tricks to help save your time so that you can never feel stuck again.

Ctrl + F is the shortcut in your browser or operating system that allows you to find words or questions quickly.

Ctrl + Tab to move to the next tab to the right and Ctrl + Shift + Tab to move to the next tab to the left.

On a phone or tablet, tap the menu icon in the upper-right corner of the window; Select "Find in Page" to search a question.

Sharing is Caring

It's the biggest motivation to help us to make the site better by sharing this to your friends or classmates.

Is an advanced level math course that prepares students for college-level calculus and covers topics such as functions, trigonometry, and complex numbers.

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (Large 100x^2 + 100y^2 - 100x + 400y + 409 =0 )

**Circle**

Write the expression as the sine, cosine, or tangent of an angle. cos 25° cos 15° - sin 25° sin 15°

- cos 40
- °

Find the standard form of the equation of the parabola with the given characteristics: Focus: (2, 2); directrix: x = -2

- (y+2)2=−8x
- (y−2)2=−8x
- (y+2)2=8x
**(y−2)2=8x**

The ______ is the point midway between the focus and the directrix.

- a. parabola
- b. equation
**c. vertex**- d. graph

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. x2+y2−6x+4y+9=0

**Circle**

What are the coordinates of the center of the circle given by the equation x2+y2-16x-8y+31=0?

**(8,4)**- (-8,4)
- (-8,-4)
- (8,-4)

Find the exact value of the cosine of the angle by using a sum or difference formula.

- −2√4(3–√−1)
- 2√4(3–√+1)
- cos 195° = 2√4(1−3–√)
**−2√4(3–√+1)**

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. ( 4 cos^2x - 1 = 0)

- a. ( frac{pi}{3} + 2npi, frac{2pi}{3} + pi, frac{4pi}{3} + 2npi, frac{5pi}{3} + 2npi), where n is any integer
- b. .9 + 2nπ, 2.3 + 2nπ, 3.6 + 2nπ, 5.8 + 2nπ, where n is any integer
**c. ( frac{pi}{3} + 2npi, frac{2pi}{3} + 2npi, frac{4pi}{3} + 2npi, frac{5pi}{3} + 2npi), where n is any integer**- d. ( frac{pi}{3} + 2npi, pi + 2npi, frac{5pi}{3} + 2npi), where n is any integer
- e. 1 + π, 2.3 + 2nπ, 3.3 - 2nπ, 5.8 + 2nπ, where n is any integer

Find the exact value of the trigonometric function given that sin u=−725

**3/5**

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. (2 cos^2 + cos x =1)

- a. (frac{pi}{3} + 2npi, frac{2pi}{3} + 2npi, frac{4pi}{3} + 2npi,frac{5pi}{3} + 2npi), where n is any integer
**b. (frac{pi}{3} + 2npi, pi + 2npi,frac{5pi}{3} + 2npi), where n is any integer**- c. .9 + 2nπ, 2.3 + 2nπ, 3.6 + 2nπ, 5.8 + 2nπ, where n is any integer
- d. (frac{pi}{3} + 2npi, frac{2pi}{3} +pi, frac{4pi}{3} + 2npi,frac{5pi}{3} + 2npi), where n is any integer
- e. 1 + π, 2.3 + 2nπ, 3.3 - 2nπ, 5.8 + 2nπ, where n is any integer

Solve the equation for exact solutions over the interval [0, 2π]. 2–√cos2x=−1

- {π12,5π12,13π12,17π12}
- {π17,7π17,13π17,19π17,25π17,31π17}
- {π18,7π18,13π18,19π18,25π18,31π18}
- {0,π3,2π3,π,4π3,5π3}
**{3π8,5π8,11π18,13π18}**

First six terms:

**3, 1, -2, -6, -11, -17**

Convert the rectangular equation to polar form. Assume a > 0. y2 - 8x - 16 = 0

- r2=16secθcscθ=32csc2θ
**r=41−cosθor−41+cosθ**- r=2acosθ
- r = a
- r=−23cosθ−sinθ

Solve the equation for exact solutions over the interval [0, 2π]. (sinfrac{x}{2} = sqrt{2} - sinfrac{x}{2})

- a. (Big{frac{pi}{12},frac{11pi}{12},frac{13pi}{12},frac{23pi}{12}Big})
- b. (Big{frac{pi}{2},frac{7pi}{6},frac{11pi}{6}Big})
- c. (Big{0,frac{pi}{4},frac{pi}{2},frac{3pi}{4},pi,frac{5pi}{4},frac{3pi}{2}frac{7pi}{4}Big})
**d. (Big{frac{pi}{2},frac{3pi}{12}Big})**- e. (Big{frac{pi}{13},frac{2pi}{3},frac{4pi}{3},frac{5pi}{3}Big})

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. 3sin2x−sinx−1=0

**.9 + 2nπ, 2.3 + 2nπ, 3.6 + 2nπ, 5.8 + 2nπ, where n is any integer**- π3+2nπ,π+2nπ,5π3+2nπ
- 1 + π, 2.3 + 2nπ, 3.3 - 2nπ, 5.8 + 2nπ, where n is any integer
- π3+2nπ,2π3+2nπ,4π3+2nπ,5π3+2nπ

A satellite dish in the shape of a paraboloid is 10 ft across, and 4 ft deep at its vertex. How far is the receiver from the vertex, if it is placed at the focus? Round off your answer to 2 decimal places.

**[No Answer]**

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (Large 4x^2+3y^2+8x-24y+51 =0 )

**ellipse**

Solve each equation for exact solutions over the interval [00, 3600]. ( (tan theta - 1)( costheta - 1) = 0 )

- a. {300, 2000, 3100}
- b. {900, 2100, 3300}
- c. {300, 2100, 2400, 3000}
- d. {150, 1300, 4300}
**e. {00, 450, 2250}**

Write the expression as the sine, cosine, or tangent of an angle. sin 3 cos 1.2 - cos 3 sin 1.2

**sin 1.8**

An orbit of a satellite around a planet is an ellipse, with the planet at one focus of this ellipse. The distance of the satellite from this star varies from 300,000 km to 500,000 km, attained when the satellite is at each of the two vertices. Find the equation of this ellipse, if its center is at the origin, and the vertices are on the x-axis. Assume all units are in 100,000 km.

- (Large frac {x^2}{16} - frac{y^2}{15} =-1 )
- (Large frac {-x^2}{16} + frac{y^2}{15} =-1 )
**(Large frac {x^2}{16} + frac{y^2}{15} =1 )**- (Large frac {x^2}{16} - frac{y^2}{15} =1 )

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (large 25x^2-10x-200y-119=0)

**Parabola**

Find a polar equation of the conic with its focus at the pole.

- r=11−cosθ
**r=12+sinθ**- r=103+2cosθ
- r=21−sinθ
- r=101−cosθ
- r=21+2cosθ

Find the standard equation of the hyperbola which satisﬁes the given condition:

- a. (x−4)226−(y−8)264=1
**b. (x−5)236−(y−7)264=1**- c. (x−6)240−(y−4)22=4
- d. (x+2)216−(y−4)220=8

A ___________ has a shape of paraboloid, where each cross section is a parabola.

- a. curve
- b. dish circle
- c. curve parabola
**d. satellite dish**

Convert the angle in degrees to radians. Express answer as a multiple of π. 144°

- a. 3π/4 radians
- 3π/5 radians
- 5π/6
- radians
**d.**- 4π/5

Which answer choice shows the center of the circle with the equation x2 + y2 -8x +14y +57.

- a. (-7, 4)
- b. (7, 4)
- c. (-4, 7)
**d. (4, -7)**

What does r refer to in the following equation? (x-h)2+(y-k)2=r

- a. The center of a circle.
- b. The focus of a parabola.
**c. The square of the radius of a circle.**- d. The distance between the vertex and the focus of a parabola.

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. x2−4x−8y+2=0

**Parabola**

Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form. Sketch the graph of the resulting equation, showing both sets of axes. b. xy – 2y – 4x = 0

**[No Answer]**

Convert the rectangular equation to polar form. Assume a > 0. 3x - y + 2 = 0

- r = a
- r2=16secθcscθ=32csc2θ
- r=41−cosθor−41+cosθ
- r=2acosθ
**r=−23cosθ−sinθ**

Solve the equation for exact solutions over the interval [0, 2π]. 3tan3x=3–√

- {π12,5π12,13π12,17π12}
- {3π8,5π8,11π18,13π18}
- {π17,7π17,13π17,19π17,25π17,31π17}
- {0,π3,2π3,π,4π3,5π3}
**{π18,7π18,13π18,19π18,25π18,31π18}**

Find the specified nth term in the expansion of the binomial.

- a. 30x8y2
- b. 60x7y3
**c. 120x7y3**- d. 120x3y7

Find the standard form of the equation of the ellipse with the given characteristics: Vertices: (0, 4), (4, 4); minor axis of length 2

- (x+2)24+(y−4)21=1
- (x+2)24+(y+4)21=1
**(x−2)24+(y−4)21=1**- (Large frac {(x-2)^2}{4} + frac {(y+4)^2}{1} =1)

Find a quadratic model for the sequence with the indicated terms.

**[No Answer]**

Find a formula for the sum of the first n terms of the sequence.

**[No Answer]**

Convert the polar equation to rectangular form. ( r = 2 sin 3 theta )

**a. (x2 + y2)2 = 6x2y – 2y3**- b. X2 + 4y – 4 = 0
- c. y = 4
- d. 4x2 – 5y2 – 36y – 36 = 0
- e. X2 + y2 – x2/3 = 0

Convert the polar equation to rectangular form. (theta = frac{2pi}{3} )

- a. (x^2 + y^2 = 16)
**b. (sqrt{3}x + y = 0 )**- c. (x^2 + y^2 - 4y = 0)
- d. (x^2 + y^2 - 2y = 0)

Solve the system by the method of substitution.

- a. (4, -2)
- b. (2, -1)
**c. (1, 1)**- d. (-1, -2)

Expand the expression in the difference quotient and simplify.

**a. 1x+h−−−−√+x−−√ ,h ≠0**- b. 1x+h−−−−√−x−−√ ,h =0
- c. 1x+h−−−−√−x−−√ ,h ≠0
- d. 1x−h−−−−√+x−−√ ,h ≠0

Solve the system by the method of substitution. Check your solution graphically.

- a. (2, -1), (5, -5)
- b. (9, -3), (6, 2)
**c. (0, -5), (4, 3)**- d. (2, -1), (5, 3)

Classify the angle as acute, right, obtuse, or straight: 2π/3

- a. right
**b. obtuse**- c. straight
- d. acute

Solve the equation for exact solutions over the interval [0, 2π]. cos2x=−12

- {π2,3π12}
- {π2,7π6,11π6}
- {0,π4,π2,3π4,π,5π4,3π27π4}
- {π12,11π12,13π12,23π12}
**{π13,2π3,4π3,5π3}**

The x’y’-coordinate system has been rotated θ degrees from the xy-coordinate system. The coordinates of a point in the xy-coordinate system are given. Find the coordinates of the point in the rotated coordinate system. a.Θ = 90o, (0, 3)

- a. (3, 0)
**b. (-3, 0)**- c. (-3, 0)
- d. (0, -3)

A type of Conic where the plane is tilted and intersects only on one cone to form a bounded curve.

- circle
- parabola
**ellipse**- hyperbola

Second differences:

**-1, -1, -1, -1**

A point in polar coordinates is given. Convert the point to rectangular coordinates.

**2√2,2√2**- 2√2,−2√2
- −2√2,2√2
- 2√3,2√3

Solve each equation for exact solutions over the interval [00, 3600]. (tanθ−1)(cosθ−1)=0

- {300, 2100, 2400, 3000}
- {150, 1300, 4300}
- {300, 2000, 3100}
**{00, 450, 2250}**- {900, 2100, 3300}

Solve the equation for exact solutions over the interval [0, 2π]. tan 4x = 0

**a. (Big{0,frac{pi}{4},frac{pi}{2},frac{3pi}{4},pi,frac{5pi}{4},frac{3pi}{2}frac{7pi}{4}Big})**- b. (Big{frac{pi}{13},frac{2pi}{3},frac{4pi}{3},frac{5pi}{3}Big})
- c. (Big{frac{pi}{12},frac{11pi}{12},frac{13pi}{12},frac{23pi}{12}Big})
- d. (Big{frac{pi}{2},frac{3pi}{12}Big})
- e. (Big{frac{pi}{2},frac{7pi}{6},frac{11pi}{6}Big})

What kind of symmetry does a circle have?

**a. All of the answer choices are correct.**- b. Horizontal
- c. Radial
- d. Vertical

The shape of this conic section is a bounded curve which looks like a flattened circle.

- circle
- hyperbola
- parabola
**ellipse**

Find the standard form of the equation of the ellipse with the given characteristics: Foci: (0, 0), (0, 8); major axis of length 16

- x248+(y+4)264=1
**x248+(y−4)264=1**- x248+(y−4)264=−1

Solve the system by the method of substitution: -x + 2y = 2 3x + y = 15

- a. (8, 1)
- b. (0, -3)
**c. (4, 3)**- d. (-2, 3)

Convert π/18 to Degrees.

- a. 20°
- b. 18°
**c. 10°**- d. 15°

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. ( 3 sin^2 x - sin x - 1 = 0 )

- a. (frac{pi}{3} + 2npi, frac{2pi}{3} + 2npi, frac{4pi}{3} + 2npi, frac{5pi}{3} + 2npi), where n is any integer.
**b. .9 + 2nπ, 2.3 + 2nπ, 3.6 + 2nπ, 5.8 + 2nπ, where n is any integer**- c. (frac{pi}{3} + 2npi, pi + 2npi, frac{5pi}{3} + 2npi), where n is any integer.
- d. 1 + π, 2.3 + 2nπ, 3.3 - 2nπ, 5.8 + 2nπ, where n is any integer

Expand the binomial by using Pascal's Triangle to determine the coefficients. (2t - s)5

- 32t5 - 20t4s + 40t3s2 - 40t2s3 + 10ts4 - s5
- 32t5 - 80t4s + 40t3s2 + 80t2s3 + 20ts4 - s5
- 16t5 + 40t4s + 80t3s2 - 80t2s3 + 10ts4 - s5
**32t5 - 80t4s + 80t3s2 - 40t2s3 + 10ts4 - s5**

What are the coordinates of the figure below:a

- G(6, -6); H(-2, -7)
- G(6, -2); H(-6, -2)
- G(-6, 28); H(-2, -7)
**G(6, -6); H(-7, -2)**

Find the standard equation of the ellipse which satisﬁes the given conditions.

**(x+4)249+(y−6)240=1**- (x+4)249−(y−6)240=−1
- (x+4)249+(y−6)240=−1
- (x−4)249−(y−6)240=−1

A circle can be centered anywhere in the coordinate plane.

**True**- False

Solve the equation for exact solutions over the interval [0, 2π]. sinx2=2–√−sinx2

- {π13,2π3,4π3,5π3}
- {π12,11π12,13π12,23π12}
- {0,π4,π2,3π4,π,5π4,3π27π4}
**{π2,3π12}**- {π2,7π6,11π6}

What Quadrant does 294° belongs to?

- a. Quadrant III
- b. Quadrant IV
- c. Quadrant I
- d. Quadrant II

Find the standard form of the equation of the ellipse with the given characteristics: Vertices: (0, 2), (4, 2); endpoints of the minor axis: (2, 3), (2, 1)

**(x−2)24+(y−2)21=1**- (x−2)24+(y+2)21=1
- (x−2)22+(y−2)21=1
- (x−2)24−(y−2)21=1

Determine the vertex of the parabola with the equation x2 - 6x + 5y = -34. Enclose your answers in parentheses.

- (3, -5)

Use the Binomial Theorem to expand and simplify the expression. (y - 4)3

- Y3 +12y2 - 48y - 64
- Y3 + 16y2 - 48y + 64
**Y3 - 12y2 + 48y - 64**- Y3 - 16y2 + 48y - 64

Solve the equation for exact solutions over the interval [0, 2π]. cos 2x = 3√2

- {π3,2π3,4π3,5π3}
- {π2,7π6,11π6}
**{π12,11π12,13π12,23π12}**- {π2,3π2}
- {0,π4,π2,3π4,π,5π43π2,7π4}

A type of Conic where the plane intersects only on one cone to form an anbounded curve.

- a. circle
- b. hyperbola
- c. ellipse
**d. parabola**

Find the center point of the following circle x2 + y2 + 8x + 4y - 3 = 40.

- a. (2, 4)
- b. (4, 2)
- c. (-2, -4)
**d. (-4, -2)**

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 4x2+16y2−4x−32y+1=0

**Ellipse**

A structure of ellipse that have the origin as their centers.

- a. diagonal
**b. horizontal**- c. vertical
- d. center

Use the Binomial Theorem to expand and simplify the expression. 2(x - 3)4 + 5(x - 3)2

- a. x4 + 24x3 + 98x2 - 113x - 207
- b. 2x4 - 12x3 - 96x2 + 232x + 207
- c. 2x4 + 12x3 - 94x2 + 246x - 153
**d. 2x4 - 24x3 + 113x2 - 246x + 207**

Find Pk+1 for the given Pk.

**[No Answer]**

Use the Binomial Theorem to expand and simplify the expression. (x2 + y2)4

- a. x8 + 6x6y2 + 4x4y4 + 4x2y6 + y8
- b. x8 + 6x6y2 + 4x4y4 + 6x2y6 + y8
**c. x8 + 4x6y2 + 6x4y4 + 4x2y6 + y8**- d. 3x8 + 2x6y2 + 9x4y4 + 4x2y6 + 2y8

Find the exact value of each expression.

**−2√−6√4**- 12

Convert the polar equation to rectangular form. r = 4

**a. x2+y2=16**- b. 3–√x+y=0
- c. x2+y2−4y=0
- d. x2+y2+2y=0

Where is the center of the circle? (x-h)2+(y-k)2=r

- a. (k,r)
- b. (-h,-k)
- c. (h,r)
**d. (h,k)**

A truck that is about to pass through the tunnel from the previous item is 10 ft wide and 8.3 ft high. Will this truck be able to pass through the tunnel?

- No
**Yes**

Use any method to solve the system.

- a. (2, 1)
- b. (0, 2)
**c. (4, 1)**- d. (8, 2)

Find the exact value of the trigonometric function given that sinu=513

- -(63/65)

Use the Binomial Theorem to approximate the quantity accurate to three decimal places.

- 1.172

Use the Binomial Theorem to expand and simplify the expression. (x + 1)4

**X4 + 4x3 + 6x2 + 4x + 1**- X4 + 16x3 + 3x2 + 4x + 1
- X4 + 2x3 + 3x2 + 2x + 1
- X4 - 4x3 + 6x2 + 4x - 1

Find the standard form of the equation of the parabola with the given characteristics: Vertex: (0, 4); directrix: y = 2

- (Large x^2=-8(y-4) )
- (Large x^2=8(y+4) )
- (Large x^2=2(y-4) )
**(Large x^2=8(y-4) )**

Find the standard form of the equation of the parabola with the given characteristics: Vertex: (5, 2); focus: (3, 2)

- (Large (y-2)^2 =-8(x+5))
- (Large (y+2)^2 =-8(x+5))
- (Large (y-2)^2 =8(x-5))
**(Large (y-2)^2 =-8(x-5))**

Rotate the axes to eliminate the xy-term in the equation. Then write the equation in standard form.

**[No Answer]**

Solve the system by the method of substitution. Check your solution graphically. -2x + y = -5 X2 + y2 = 25

- a. (0, -5), (4, 3)
- b. (2, -1), (5, -5)
- c. (2, -1), (5, 3)
- d. (9, -3), (6, 2)

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 4x2−y2−4x−3=0

**hyperbola**

Expand the binomial by using Pascal's Triangle to determine the coefficients. (x - 2y)5

- 2x5 + 20x4y + 80x3y2 + 80x2y3 + 40xy4 + 32y5
**x5 + 10x4y + 40x3y2 + 80x2y3 + 80xy4 + 32y5**- x5 + 10x4y + 40x3y2 + 80x2y3 + 40xy4 + 16y5
- 32x5 + 10x4y + 40x3y2 + 80x2y3 + 40xy4 + 16y5

Expand the binomial by using Pascal’s Triangle to determine the coefficients. (x + 2y)5

- a. X5 + 5x4y + 20x3y2 + 40x2y3 + 40xy4 + 16y5
**b. X5 + 10x4y + 40x3y2 + 80x2y3 + 80xy4 + 32y5**- c. X5 + 10x4y + 30x3y2 + 80x2y3 + 40xy4 + 32y5
- d. X5 + 10x4y + 40x2y3 + 80x4y + 80xy5 + 32y5

Convert the polar equation to rectangular form.

**3–√x+y=0**- x2+y2=16
- x2+y2−4y=0
- x2+y2−2y=0

Solve the system by the method of elimination and check any solutions algebraically:

- a. (4, -1)
- b. (-7, 3)
- c. (5, -1)
**d. (5, -2)**

Find the exact value of the tangent of the angle by using a sum or difference formula. -165°

- −2√4(3–√−1
- tan (-165)° = −2√4(3–√+1
- 2√4(1−3–√
**2−3–√**

Use the Binomial Theorem to expand and simplify the expression. (3a - 4b)5

- a. 243a5 + 1620a4b - 4320a3b2 + 6540a2b3 + 3230ab4 - 1024b5
- b. 115a5 + 1620a4b - 4320a3b2 - 5760a2b3 + 3840ab4 - 1024b5
**c. 243a5 - 1620a4b + 4320a3b2 - 5760a2b3 + 3840ab4 - 1024b5**- d. 215a5 - 1620a4b + 2320a3b2 + 5760a2b3 - 3840ab4 - 5344b5

A whispering gallery has a semielliptical ceiling that is 9 m high and 30 m long. How high is the ceiling above the two foci?

- a. 6.5 m
- b. 5.6 m
- c. 4.5 m
**d. 5.4 m**

Find the sum.

**30**

Find the standard equation of the parabola which satisﬁes the given condition:

- a. (y - 3)2 = -10(x + 8)
**b. (y - 3)2 = 10(x + 8)**- c. (y - 3)2 = 10(x - 8)
- d. (y + 3)2 = 10(x + 8)

Solve each equation for exact solutions over the interval [00, 3600]. ((cottheta - sqrt{3})(2sintheta + sqrt{3}) = 0)

- a. {00, 450, 2250}
- b. {150, 1300, 4300}
- c. {900, 2100, 3300}
**d. {300, 2100, 2400, 3000}**- e. {300, 2000, 3100}

Solve the system by the method of elimination and check any solutions algebraically.

**[No Answer]**

What is the standard form of the equation of the circle x2 + 14x + y2 - 6y - 23 = 0?

- a. (x + 7)2 + (y + 3)2 = 92
**b. (x + 7)2 + (y - 3)2 = 92**- c. (x - 7)2 + (y + 3)2 = 92
- d. (x - 7)2 + (y - 3)2 = 92

r=21−cosθ

**PARABOLA**

Find the standard form of the equation of the parabola with the given characteristics:

- y2=−4(x+4)
- y2=4(−x+4)
- y2=4(x−4)
**y2=4(x+4)**

An airplane flying into a headwind travels the 1800-mile flying distance between Pittsburgh, Pennsylvania and Phoenix, Arizona in 3 hours and 36 minutes. On the return flight, the distance is traveled in 3 hours. Find the airspeed of the plane and the speed of the wind, assuming that both remain constant.

- a. 1050 miles per hour, 50 miles per hour
- b. 500 miles per hour, 100 miles per hour
- c. 750 miles per hour, 25 miles per hour
**d. 550 miles per hour, 50 miles per hour**

A type of Conic where the plane is horizontal.

- a. parabola
**b. circle**- c. hyperbola
- d. ellipse

Solve the system by the method of elimination and check any solutions algebraically. 0.05x – 0.03y = 0.21 0.07x + 0.02y = 0.16

**[No Answer]**

Rotate the axes to eliminate the xy-term in the equation. Then write the equation in standard form. 5x2 – 6xy + 5y2 – 12 = 0

**[No Answer]**

Choose an expression for the apparent nth term of the sequence. Assume that n begins with 1.

**n+12n−1**- (−1)n(n+1)n+2
- an = (-1)n + 1
- 1n
- 1n2

Find the standard form of the equation of the ellipse with the given characteristics: Center: (0, 4), a = 2c; vertices:

- (Large frac {x^2} {16} + frac {(y+4)^2}{-12} = 1)
**(Large frac {x^2} {16} + frac {(y-4)^2}{12} = 1)**- (Large frac {x^2} {12} + frac {(y-4)^2}{16} = 1)
- (Large frac {x^2} {-16} + frac {(y-4)^2}{12} = 1)

Solve the system by the method of elimination and check any solutions algebraically. 3x + 2y = 10 2x + 5y = 3

- (2, 8)
**(4, -1)**- (8, -1)
- (-4, 2)

Convert the rectangular equation to polar form. Assume a > 0. x2 + y2 - 2ax = 0

- r=−23cosθ−sinθ
**r=2acosθ**- r = a
- r2=16secθcscθ=32csc2θ
- r=41−cosθor−41+cosθ

Solve the equation for exact solutions over the interval [0, 2π]. (cos2x = -frac{1}{2} )

- a. (Big{frac{pi}{12},frac{11pi}{12},frac{13pi}{12},frac{23pi}{12}Big})
- b. (Big{0,frac{pi}{4},frac{pi}{2},frac{3pi}{4},pi,frac{5pi}{4},frac{3pi}{2}frac{7pi}{4}Big})
**c. (Big{frac{pi}{13},frac{2pi}{3},frac{4pi}{3},frac{5pi}{3}Big})**- d. (Big{frac{pi}{2},frac{3pi}{12}Big})
- e. (Big{frac{pi}{2},frac{7pi}{6},frac{11pi}{6}Big})

Two control towers are located at points Q(-500, 0) and R(500, 0), on a straight shore where the x-axis runs through (all distances are in meters). At the same moment, both towers sent a radio signal to a ship out at sea, each traveling at 300 m/µs. The ship received the signal from Q 3 µs (microseconds) before the message from R.

- a. x2212000−y269700=7(leftbranch)
**b. x2202500−y247500=1(leftbranch)**- c. x2204500−y257500=1(leftbranch)
- d. x2217500−y237700=12(leftbranch)

Convert the polar equation to rectangular form. r=4cscθ

- a. 4x2 – 5y2 – 36y – 36 = 0
- b. (x2 + y2)2 = 6x2y – 2y3
- c. X2 + 4y – 4 = 0
- d. X2 + y2 – x2/3 = 0
**e. y = 4**

What is the quadrant or axis on which the point is located? (-10, -16)

- II
- IV
**III**- I

Give the coordinates (enclose the coordinates in parentheses) of the foci, vertices, and covertices of the ellipse with equation

**(-12, 0)(-13, 0)(0, -5)(12, 0)(13, 0)(0, 5)**

Solve the equation for exact solutions over the interval [0, 2π]. (sin 3x = -1)

- a. (Big{0,frac{pi}{4},frac{pi}{2},frac{3pi}{4},pi,frac{5pi}{4},frac{3pi}{2}frac{7pi}{4}Big})
**b. (Big{frac{pi}{2},frac{7pi}{6},frac{11pi}{6}Big})**- c. (Big{frac{pi}{2},frac{3pi}{12}Big})
- d. (Big{frac{pi}{13},frac{2pi}{3},frac{4pi}{3},frac{5pi}{3}Big})
- e. (Big{frac{pi}{12},frac{11pi}{12},frac{13pi}{12},frac{23pi}{12}Big})

Convert 2π into degrees.

- a. 300°
- b. 144°
**c. 360°**- d. 280°

A big room is constructed so that the ceiling is a dome that is semielliptical in shape. If a person stands at one focus and speaks, the sound that is made bounces off the ceiling and gets reﬂected to the other focus. Thus, if two people stand at the foci (ignoring their heights), they will be able to hear each other. If the room is 34 m long and 8 m high, how far from the center should each of two people stand if they would like to whisper back and forth and hear each other?

- a. 17 m
**b. 15 m**- c. 24 m
- d. 16 m

Find the sum using the formulas for the sums of powers of integers.

**[No Answer]**

First differences:

**-2, -3, -4, -5, -6**

Give the coordinates (enclose the coordinates in parentheses) of the foci, vertices, and covertices of the ellipse with equation .

**(-12, 0)(-13, 0)(0, -5)(12, 0)(13, 0)(0, -5)**

Use the Binomial Theorem to expand and simplify the expression.

- a. X2 + 6x3/2 + 22x + 54x1/2 + 40
- b. X2 + 6x3/2 + 26x + 54x1/2 + 9
**c. X2 + 12x3/2 + 54x + 108x1/2 + 81**- d. X2 + 28x3/2 + 50x - 108x1/2 + 80

Using the equation for the circle find its radius: x2 + y2 + 6x + 2y + 6 = 0.

- a. r = 1
**b. r = 2**- c. r = 3
- d. r = 4

What are the coordinates of the given figure below:a

- A(5, -5); B(1, -2)
- A(5, 5); B(0, 2)
- A(-5, 5); B(0, 2)
**A(5, 5); B(0, -2)**

What is the standard form of the equation of the circle x2 + y2 + 10x - 4y - 7 = 0?

**a. (x + 5)2 + (y - 2)2 = 62**- b. (x + 5)2 + (y + 2)2 = 62
- c. (x - 5)2 + (y - 2)2 = 62
- d. (x - 5)2 + (y + 2)2 = 62

Find the standard form of the equation of the ellipse with the given characteristics:

- (x+2)21+(y−1)23=1
- (x+2)21+(y+3)29=1
- (x−2)21+(y+3)29=1
**(x−2)21+(y−3)29=1**

What is the quadrant or axis on which the point is located? (-15, 0)

- IV
- y-axis
**x-axis**- II

Solve the equation for exact solutions over the interval [0, 2π]. 23–√sin2x=3–√

- {3π8,5π8,11π8,13π8}
- {π18,7π18,13π18,19π18,25π18,31π18}
- {π17,7π17,13π17,19π17,25π17,31π17}
**{π12,5π12,13π12,17π12}**- {0,π3,2π3,π,4π3,5π3}

Determine the quadrant in which the angle lies. 349°

- a. Quadrant III
**b. Quadrant IV**- c. Quadrant I
- d. Quadrant II

Use the Binomial Theorem to expand and simplify the expression. 2(x - 3)5 + 5(x - 3)2

- 2x4 – 12x3 + 25x2 – 220x + 207
- 2x4 + 24x3 - 113x2 + 246x + 207
- 2x4 + 24x3 - 113x2 + 246x - 207
**2x4 – 24x3 + 113x2 – 246x + 207**

Find the equation in standard form of the ellipse whose foci are F1 (-8,0) and F2 (8,0), such that for any point on it, the sum of its distances from the foci is 20.

**[No Answer]**

What Quadrant does 144° belongs to?

- a. Quadrant I
- b. Quadrant III
- c. Quadrant IV
**d. Quadrant II**

Solve the system by the method of substitution:

- a. (0, -3)
- b. (8, 1)
- c. (-2, 3)
**d. (4, 3)**

Use the Binomial Theorem to expand and simplify the expression. (x2/3 - y1/3)3

- a. X2 – 3x2/3y2/3 + 3x4/3y1/3 – y
**b. X2 – 3x4/3y1/3 + 3x2/3y2/3 – y**- c. X2 + 3x4/3y1/3 - 3x2/3y2/3 – y
- d. X4 – 3x4/3y1/3 + 3x2/3y2/3 + y

Convert the rectangular equation to polar form. Assume a > 0. y = 4

- R = 6
**R = 4 csc θ**- R = 3 sec θ
- R = 4

Expand the binomial by using Pascal’s Triangle to determine the coefficients.

- a. X5 + 10x4y + 30x3y2 + 80x2y3 + 40xy4 + 32y5
- b. X5 + 10x4y + 40x2y3 + 80x4y + 80xy5 + 32y5
**c. X5 + 10x4y + 40x3y2 + 80x2y3 + 80xy4 + 32y5**- d. X5 + 5x4y + 20x3y2 + 40x2y3 + 40xy4 + 16y5

The term _________ is both used to refer to a segment from center C to a point P on the circle, and the length of this segment.

- a. parabola
**b. radius**- c. diameter
- d. point

What is the quadrant or axis on which the point is located? (13, -14)

- II
- I
- x-axis
**IV**

What are the coordinates of the figure below: A

**A(4, 5); B(-5, 5)**- A(4, 5); B(5, -5)
- A(4, 5); B(5, 5)
- A(5, 24); B(5, -5)

The orbit of a planet around a star is described by the equation where the star is at one focus, and all units are in millions of kilometers. The planet is closest and farthest from the star, when it is at the vertices. How far is the planet when it is closest to the sun? How far is the planet when it is farthest from the sun?

- a. 900 million km, 700 million km
**b. 700 million km, 900 million km**- c. 800 million km, 900 million km
- d. 640 million km, 700 million km

Plot the point given in polar coordinates and find two additional polar representations of the point, using -2π < θ < 2π.

**[No Answer]**

Solve the system by the method of elimination and check any solutions algebraically.X + 2y = 4 X – 2y = 1

- (12, 2)
- (8, 2)
- (2, 0)
- (3, 4)

Give the coordinates of the center, foci, and covertices of the ellipse with equation 41x2 + 16y2 + 246x - 192y + 289 = 0. Only vertices are given. Enclose the coordinates in parentheses. For example, (6, 4)

**(-3, 6)(-3, 1)(-7, 6)(-3, 11)(1, 6)**

Solve the equation for exact solutions over the interval [0, 2π]. cot3x=3–√

- {0,π3,2π3,π,4π3,5π3}
- {3π8,5π8,11π18,13π18}
- {π18,7π18,13π18,19π18,25π18,31π18}
- {π12,5π12,13π12,17π12}
**{π17,7π17,13π17,19π17,25π17,31π17}**

A parabola has focus F(-2, -5) and directrix x = 6. Find the standard equation of the parabola.

- (y - 5)2 = 16(x - 4)
- (y + 10)2 = 16(x - 4)
- (y - 5)2 = -16(x + 2)
**(y + 5)2 = -16(x - 2)**

Give all exact solutions over the interval [0°, 360°].

**22.5° + 360°n, 112.5° + 360°n, 202.5° + 360°n, 292.5° + 360°n, where n is any integer**- 0° + 360°n, 60° + 360°n, 180° + 360°, 300° + 360°n, where n is any integer.
- 11.8° + 360°n, 78.2° + 360°n, 191.8° + 360°n, 258.2° + 360°n, where n is any integer.
- 30° + 360°n, 90° + 360°n, 150° + 360°n, 210° + 360°n, 270° + 360°n, 330° + 360°n, where n is any integer.

Classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. (Large y^2 -4x^2 +4x -2y -4 =0)

**hyperbola**

In order to graph a circle one must graph all the points that are equidistant from:

- a. a single point outside the circle.
- b. two points, one inside and one outside the circle.
- c. one point and one line, like a parabola.
**d. a single point at the center.**

Solve the equation for exact solutions over the interval [0, 2π]. sin 3x = 0

- {π18,7π18,13π18,19π18,25π18,31π18}
- {π12,5π12,13π12,17π12}
- {π17,7π17,13π17,19π17,25π17,31π17}
- {3π8,5π8,11π18,13π18}
**{0,π3,2π3,π,4π3,5π3}**

Find the radian measure of the central angle of a circle of radius r that intercepts an arc of length s.

- a. -5 radians
- b. 1/5 radians
- 5
- radians
- c. 5°
**d. 5 radians**

Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form. Sketch the graph of the resulting equation, showing both sets of axes.

**d.**

Convert the angle in radians to degrees. 5π/ 4

- a. 450°
**b. 225°**- c. 144π°
- d. 144°

Convert the polar equation to rectangular form. r = 62−3sinθ

- a. y = 4
- b. (x2 + y2)2 = 6x2y – 2y3
- c. X2 + 4y – 4 = 0
**d. 4x2 – 5y2 – 36y – 36 = 0**- e. X2 + y2 – x2/3 = 0

Write the expression as the sine, cosine, or tangent of an angle. tan2x+tanx1−tan2xtanx

**tan 3x**

Find the standard equation of the hyperbola which satisﬁes the given conditions:

- a. (x−7)255−(y−8)226=12
**b. (x−3)225−(y−8)256=1**- c. (x+5)228−(y−8)216=6
- d. (x+6)220−(y−12)216=1

Write the first five terms of the sequence. Assume that n begins with 1.

- 0
- , Answer
- 6
- 24
- 60

Determine all solutions of each equation in radians (for x) or degrees (for θ) to the nearest tenth as appropriate. 2cos2+cosx=1

- π3+2nπ,2π3+π,4π3+2nπ,5π3+2nπ
**π3+2nπ,π+2nπ,5π3+2nπ**- π3+2nπ,2π3+2nπ,4π3+2nπ,5π3+2nπ
- .9 + 2nπ, 2.3 + 2nπ, 3.6 + 2nπ, 5.8 + 2nπ, where n is any integer
- 1 + π, 2.3 + 2nπ, 3.3 - 2nπ, 5.8 + 2nπ, where n is any integer

Convert the angle in radians to degrees. Round to two decimal places. -3.97 radians

**a. -227.46°**- b. -227.06°
- c. 0.07°
- d. 0.06°

Solve each equation for exact solutions over the interval [00, 3600]. 2sinθ−1=cscθ

- {00, 450, 2250}
- {300, 2000, 3100}
- {150, 1300, 4300}
**{900, 2100, 3300}**- {300, 2100, 2400, 3000}

What is the quadrant or axis on which the point is located? (7,7)

- IV
**I**- II
- III

Give all exact solutions over the interval [00, 3600].

- 22.5° + 360°n, 112.5° + 360°n, 202.5° + 360°n, 292.5° + 360°n, where n is any integer.
**0° + 360°n, 60° + 360°n, 180° + 360°, 300° + 360°n, where n is any integer.**- 11.8° + 360°n, 78.2° + 360°n, 191.8° + 360°n, 258.2° + 360°n, where n is any integer
- 30° + 360°n, 90° + 360°n, 150° + 360°n, 210° + 360°n, 270° + 360°n, 330° + 360°n, where n is any integer.

Rotate the axes to eliminate the xy-term in the equation.Then write the equation in standard form. Sketch the graph of the resulting equation, showing both sets of axes. a. x2 – 2xy + y2 – 1 = 0

**[No Answer]**

To keep up this site, we need your assistance. A little gift will help us alot.

Donate- The more you give the more you receive.

Special Topics in Financial Management

Quantitative Methods

Physics For Engineers

Operations Auditing

Numerical Methods

Mathematics in the Modern World

Discrete Structures

Discrete Structures 2

Discrete Mathematics

Data Analysis

Calculus-Based Physics

Biostatistics

Calculus-Based Physics 2

Show All Subject

Shopee Helmet

Shopee 3D Floor

Lazada Smart TV Box

Our team has been certified on Ezoic the google award-winning platform for publishers.

We just wanted to take this opportunity to genuinely thank you for visiting with us and supporting our team hard work.